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Abstract— This paper presents a new model for auto parallelization of some given source code without the need of 

code modification or additional information from the programmer. The proposed model, call it PyParallelize, is based 

on dynamic AST manipulation and refinement. This AST implementation is efficient for automatic parallel 

conversion and we use it to present a new model that provides better accuracy results. The PyParallelize model is 

implemented using the Python programming language to utilize its rich libraries. In addition to parallelizing 

sequential code, it is include a method for detecting recursive functions. The performance and accuracy of the 

proposed model were tested using a parallel computer, and the results were better than benchmark models. 
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I. INTRODUCTION 

Parallelization problems have been actual research-subjects for many researchers due to their benefit to many 
real-world applications, so a lot of efforts should be devoted to improve existing methods of parallelization and to 

develop new ones. 

Many approaches based on automatic parallelization of sequential applications simplify writing parallel 

programs for sequential computers. An automatic parallelization compiler for multicore systems that handles the coarse-

grain syntactical variations in the source code was introduced in [1, 2]. Pydron, which is a system to parallelize and 

execute sequential Python code on a cloud, cluster, or multi-core infrastructure, was presented by [3]. They showed that 

Pydron uses semi-automatic parallelization and can perform parallelization with an API of only two decorators. 

The approaches that extract coarse-grained task-level parallelism combined with the extraction of DoAll loops 

from sequential applications written in FORTRAN were presented by [4]. A coarse-grained thread-level parallelization 

techniques for C and FORTRAN applications presented in [5] employed intraprocedural analysis to spawn threads 

spanning function boundaries. The presented framework can apply analysis and optimization techniques, such as scalar 

privatization, reduction recognition, array analyses, and cache optimizations. As a target platform, they chose an eight-
core Digital Alpha Server 8400 that was considered high-performance architecture at the time of their research. A more 

current task-level parallelization approach was presented by [6]. Their approach was integrated in the MPSoC 

Application Programming Studio (MAPS) and performed a semi-automatic parallelization system in which the user can 

manually steer the granularity of the extracted parallelism. Analysis on Cetus and Par4all using sample programs was 

performed by [7], and they concluded that the tools do parallelization in an effective way for single loops but do not 

show effective results for nested loops. 

The method in [8] focused on the runtime performance that showed the speedup of the resulting parallelized 

code based on virtual operations and data partitioning used to exploit parallelism structured around array primitives. A 

suite of compilation techniques to convert general C code into parallel code was presented in [9]. It was written in C and 

relied on stream filters to obtain performance gains. Experiments have shown that the compiler was able to generate 

efficient programs that competed with equivalent hand-coded applications. The compiler found parallelism by searching 
for map-reduce patterns in the source code. This method is a non-trivial step towards the main goal of allowing 

application developers to produce high-performance parallel code without having to worry about details such as race-

conditions and thread synchronization. 

In this paper, we present a new model based on analyzing the Abstract Syntax Trees (AST) to help automate the 

process of parallel conversion by providing information about the source code without the need of any code modification 

or additional information from the programmer. This model, called PyParallelize, successfully implements a novel 

automatic method for parallelizing source code using Python programming language. PyParallelize does not focus on 

data level parallelism but focuses on task level parallelism, and it parallelizes nested loops of two levels. Test results 

showed that PyParallelize is able to achieve parallel speed up and performance better than Pydron [3], PIPS [10] and 

Cetus [11]. 

http://www.ijarcsse.com/
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II.   METHODOLOGY AND IMPLEMENTATION OF PYPARALLELIZE MODEL 
The proposed model, PyParallelize, will be presented as a set of steps to be performed where we will implement 

this methodology by linking each step with its implementation concurrently. This research work discusses the methods 

and analysis of PyParallelize taken to achieve a parallelized source code. PyParallelize is focused on dynamic AST 

manipulation and refinement. The steps taken by PyParallelize include AST generation, pattern generation, pattern 

matching, pattern rules, pattern analysis, and parallel conversion. These steps, and the libraries used by PyParallelize, are 

described in the following subsections. 

 

A. Python Libraries Used by PyParallelize 

Python libraries aid the construction of PyParallelize by providing a simple backend without losing performance 

or accuracy. The used Python libraries are the graphviz library, the lib2to3 library, and the batchOpenMPI. 

 

B. AST Manipulation and Refinement 

PyParallelize operates by translating Python into an intermediate AST. The tree is then converted into a Pattern 

and evaluated by Pattern Matching. First, we take the source code and generate its AST using the graphviz library. As an 

example, consider the simple source code shown in Fig. 1. 

for i in range(0,5): 

 print (i)  

Fig. 1. Simple source code 

 

The generated AST for this example is shown in Fig. 2. By looking into Fig. 2, the structure of the source code 

can be determined and analyzed in the subsequent steps. 
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Fig. 2. AST example 
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C. Pattern Generation 
The analysis of the AST and the generation of its pattern are done using the Python lib2to3.pytree library, so the 

obtained generated pattern for “for-loop” will be as shown in Fig. 3. 

for_stmt< 'for' 'i' 'in' power< 'range' trailer< '(' arglist< '0' ',' '5' > ')'> > ':' simple_stmt< 

print_stmt< 'print' atom< '(' 'i' ')' > > '\n' > > 

Fig. 2. Generated for-loop pattern 

 

The generated pattern requires further analysis to be applied to source code as a general rule. The generalization 

of the pattern will be described in the pattern analysis step. 

 

D. Pattern Matching 

This step is done to match the generated pattern with Pattern Rules based on the Python lib2to3.fixer library, as 

shown in Fig. 4. 

def transform(self, node, results): 

 name = results["name"] 

 name.replace(Name("i_changed", prefix=name.get_prefix())) 

Fig. 3. Transform function definition 

 

Using the transform function definition shown in Fig. 4, the source code is transformed as shown in Fig. 5. 

for i_changed in range(0,5):  

 print (i_changed) 

Fig. 4. Transformed source code 

 

E. Pattern Rules 

Pattern rules give PyParallelize a method of detecting occurrences of loops and function. The accuracy of 

PyParallelize is affected by the quality of the pattern rules taken after pattern analysis. In this step, the pattern rules for 

loops, functions and recursion are as discussed below, where their definitions are shown in Fig. 6, 7 and 8, respectively. 
i. Loops. Check to ensure that there is no assignment or arithmetic operation on variables (e.g., a=1+1). If there is 

such a condition, exclude the loop form PyParallelize. 

for_stmt< 'for' old_stmt=(any) any* > any* 

| 

not(arith_expr< any* >| expr_stmt) 

Fig. 5. Pattern rule for for loop 

 

ii. Functions. If there is a call of another function or passing of modified variables, exclude the function. 

funcdef< 'def' old=' parameters< '(' 'str' ')' any* > any* > any* 

| 

not (expr_stmt<any*>) 

Fig. 6. Pattern rule for function 

 

iii. Recursion. Check for recursion by checking the return value of the function. If the return value is a call for the 

same function, mark the function as a variable for parallelization. 

 

These present a semi-generalized form of patterns rules. The details of the rules are described further in the 

Pattern analysis step. 

funcdef< 'def' old_stmt=(any) parameters<  any* >  > any* 

| 

not (expr_stmt<any*>) 

| 

return_stmt func=(any) > 

| 

old_stmt==func  

Fig. 7. Pattern rule for function with recursion 
 

F. Pattern Analysis 

To generalize PyParallelize for working with different source codes, follow the lib2to3 library Pattern grammar 

generation rules. Python grammar is based on a modified version of Extended Backus–Naur Form (EBNF) grammar. Full 

Grammar Specification of Python is available online [12]. 
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# A grammar to describe tree matching patterns. 

#  

# - 'TOKEN' stands for any token (leaf node) 

# - 'any' stands for any node (leaf or interior) 

# With 'any' we can still specify the sub-structure. 

# The start symbol is 'Matcher'. 

Matcher: Alternatives ENDMARKER 

Alternatives: Alternative ('|' Alternative)* 

Alternative: (Unit | NegatedUnit)+ 

Unit: [NAME '='] ( STRING [Repeater] 

                 | NAME [Details] [Repeater] 

                 | '(' Alternatives ')' [Repeater] 

                 | '[' Alternatives ']' ) 

NegatedUnit: 'not' (STRING | NAME [Details] | '(' Alternatives ')') 

Repeater: '*' | '+' | '{' NUMBER [',' NUMBER] '}' 

Details: '<' Alternatives '>' 

Fig. 8. lib2to3 Pattern Grammar 

 

Fig. 9 shows the general rule for patterns. The main terms in these rules are described below. 

Matcher: Alternatives ENDMARKER 

Matcher is the Python grammar symbol (e.g., for_stmt< , while_stmt<, funcdef<). 
Alternatives are enclosed by parentheses (e.g, „(„ „)‟ ). 

Details are the descriptions of the arguments inside the grammar symbol. 

ENDMARKER is the end marker of pattern („>‟). 

By using the information described in the lib2to3 grammar pattern, the general rules for the generation of 

pattern rules are established. 

1)  Synchronization points: A synchronization point is where the source code needs to be executed sequentially 

[3]. PyParallelize cannot skip around synchronization points. Every operation that comes before the synchronization 

point must finish while all operations that come after must wait. A single synchronization point inside a loop would force 

the iterations to run sequentially; one after the other. This makes parallelization impossible. The main operations that 

cause a synchronization point are calls of system built-in functions and operations that modify an object. 

2)  Generalization analysis: The patterns taken from the pattern generation procedure are a specific form of a 

pattern for the specific source code. These cannot be used as a general form of patterns. Thus, the patterns need further 
analysis, which is described as follows. 

i. Variables. The AST used by PyParallelize is directional, acyclic, and bipartite. There are two types of nodes: 

Value-nodes, which represent immutable data, and Task-nodes, which represent operations on data. In general, 

variables become value-nodes. Expressions and statements become tasks. Intermediate values in expressions are 

also represented by value-nodes. In PyParallelize, dependencies between tasks can only result from data 

dependencies. Data dependency can be handled by marking the assignment of the variable with the last read flag 

as a rule that can ensure synchronization of the variable. 

Variables can be reassigned. This conflicts with the property that value-nodes represent immutable data. Hence, 

a one-to-one relationship between variables and value-nodes is not possible. We need to account for that by 

converting it to a static single assignment form [13] as shown in Fig. 10. 

x=1                             x1=1 

x=2                             x2=2 

y=x     Convert           y=x2 

Fig. 9. Static single assignment form 

 

ii. Loops. The loop body in Python can be used as a modifier or a reader of variables combined with a conditional 

statement or without. In addition, function calls may cause a synchronization point. To address these problems, 

the complete loop construct is initially translated into a single task and marked. Then, at execution time, the loop 

is evaluated to meet the limitations for parallelization. 

iii. Functions. Functions are first class objects in Python. When a function is defined, it is represented in the AST 

by a value-node. This value node is an input to a call-task, together with the arguments of the function. 

 In general, at conversion time, it is not known what the function can do. It is assumed that the function may 

have side effects or modify arguments passed to it in-place. This leads to additional edges connected to the task. 
iv. Conditional statements. A conditional statement inside a loop or a function body adds ambiguity to variables if 

it is assigned in only one section. For such situations, a special task is added to the AST, which produces an 

undefined value as a result. The model is aware of such value nodes with an undefined content. It will produce 

the same exceptions in an attempt to use the value node as Python would when using an undefined variable. 
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v. return, break, and continue statements. These statements interrupt the regular control flow. This can be handled 
by converting the statement into a conditional statement and a flag variable in the AST. Once such a flag has been 

set, all code afterward is put into a condition checking the flag. Since the interrupting statement might be inside 

nested if statements, multiple conditions may be introduced. The task of the loop is aware of the flags and uses 

them to decide whether to replace the task by the body sub-graph or to end the loop, with or without a final 

replacement with the else sub-graph. In the case of the return statement, the return value is stored together with 

the flag. A conversion of for loop with break statement is shown in Fig. 11. 

for i in items : 

 #some code 

 if i == end: 

  break 

 #some code 

   Convert 

 

 

for i in items until break_flag: 

 #some code 
 if i == end: 

  break_flag=True 

 if not break_flag: 

  #some code 

Fig. 10. for loop with break statement conversion 

 

Consequently, after factoring all of the above in the analysis, the final pattern to be used with the AST is defined. 
 

G. Synchronization Points Removal 

The nature of Python prevents making strong guarantees from the source code alone. This forces the AST to 

have many synchronization points. The most common cause is call expressions that are not known at conversion time. 

Once the source code is converted, PyParallelize can check for flags and determine where the source code can or cannot 

be parallelized. 

 

H. Parallel Conversion 

After pattern matching, the conversion can be started by wrapping the code for parallelization in a function call, 

as seen in Fig. 12. 

@parallel 

def func(): 

 #do something 

 return #some value  

Fig. 11. Wrapped parallelized function definition 

 

Python language does not support passing loops as objects, so loops are wrapped with a private function 

definition, as seen in Fig. 13. 

@parallel 

def loop() 
    for i in range(10): 

        #somecode 

    return  

Fig. 12. A loop wrapped in a parallelized function 

 

After that, the call for methods from the batchOpenMPI library for loops and other types is done, as seen in Fig. 

14, and the fully converted parallel source code is achieved. 

f = batchOpenMPI.batchFunction(loop) #creating function wrapper 

batchOpenMPI.begin_MPI_loop()  

f.addtoBatch(4) 

batchOpenMPI.processBatch() 

batchOpenMPI.end_MPI_loop(print_stats=True) 

Fig. 13. Call methods used to parallelize the source code 

 

III.    TESTING AND RESULTS 

The testing process of the proposed methodology for the PyParallelize model was done using an Intel Xeon E5-

2666 v3 processor with 56 cores running Red Hat Enterprise RHEL 7 64-bit version. Measurement of accuracy was done 
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for sequential source code and for converted parallel source code. The converted parallel source code was executed by 
varying numbers of cores such as 2, 4, and 8. 

To measure the accuracy of PyParallelize, the parallel code produced by PyParallelize is analyzed and compared 

to hand-converted parallel code. Alternatively, the source code may be considered successfully converted if the output of 

the converted parallel code matches the output of the original sequential code. Table 1 shows various source codes with 

different criteria that could challenge PyParallelize. As shown in Table I, PyParallelize was able to successfully convert 

most of the given source codes but failed to convert nested loops with three or more levels due to the extra complexity of 

such loops. 

 

Table I Accuracy Rates of PyParallelize 

Type of source code Successful conversion Successful output 

Simple source code 100% 100% 

With simple loops 99% 99% 

With 2-level nested loops 99% 99% 

With 3-level nested loops 60% 65% 

With simple functions 100% 100% 

With recursive function 98% 98% 

 

The execution time for calculation of matrix multiplication, c[n][n] += (a[n][n] * b[n][n]), was computed for a 

large matrix size of array size of 70000 elements, and then the comparison of PyParallelize with Pydron, PIPS, and Cetus 

was done. The results of this comparison are shown in Fig. 15, which shows that PyParallelize was faster than these other 

methods. 

 
Fig. 15 Execution times (minutes) of matrix manipulations of array size of 70000 using PyParallelize, Pydron, PIPS, and 

Cetus 

 

IV.    CONCLUSIONS 

A new parallelization model, named PyParallelize, was introduced, and it included a method for detecting 

recursive functions. It automates the process of parallel conversion by providing information about the source code 

without the need of any code modification or additional information from the programmer. The results obtained by 

implementing and testing PyParallelize showed that it was sufficiently efficient for automatic parallel conversion and it 

gave results with a relatively high rate of accuracy. However, this proposed model does not work efficiently when the 

number of nested loops has more than two levels, so this might be a good research topic for future work. 
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